

THE EFFECT OF ALLOYING ELEMENTS ON THE PROPERTIES OF STEELS																					
		Mech	nanica	al prop	oertie	S											Magnetic properties				
Alloying element	Hardness	Strength	Yield Point	Elongation	Reduction of area	Impact value	Elasticity	High temperature stability	Cooling rate	Carbide formation	Resistance to wear	Forgeability	Machinability	Scaling	Nittrability	Resistance to corrosion	hysteresis	Permeability	Coercive force	Remanence	Loss of Watt
Silicon	1	1	11	Ļ	~	Ļ	111	1	Ļ	Ļ	$\downarrow \downarrow \downarrow \downarrow$	Ļ	Ļ	Ļ	Ļ		μĻ	11	11	-	$\downarrow\downarrow$
Manganese inperlit. steels	1	1	1	~	~	~	1	~	Ļ	~	Ħ	1	Ļ	~	~	-)			
Manganese in austenlt. steels	$\downarrow \downarrow \downarrow \downarrow$	1	Ļ	111	-	-	-	-	↓↓	-	-	$\downarrow \downarrow \downarrow \downarrow$	$\downarrow \downarrow \downarrow \downarrow$	↓↓	-	-		not	magr	ietic	
Chromium	11	11	11	Ļ	Ļ	Ļ	1	1	↓↓↓	11	1 T	Ļ	-	↓↓↓	11	111			Ť	11	
Nickel in perlit, steels	Ť	1	1	~	~	~	-	1	↓↓	-	↓↓	Ļ	Ļ	Ļ	-				11	11	
Nickel in austenit- steels	↓↓	1	Ļ	111	11	111	-	111	↓↓	-	-	↓↓↓	$\downarrow \downarrow \downarrow \downarrow$	↓↓	-	11		not	magr	ietic	
Aluminium	-	-	-	-	Ļ	Ļ	-	-	-	-	-	↓↓	-	,↓↓	111	-			11	11	
Tungsten	Ť	1	1	Ļ	Ļ	~	-	111	↓↓	11	111	↓↓	11	11	1	-			111	111	
Vanadium	1	Ť	1	~	~	1 T	1	11	††	1111	11	1 (ł	1	1					
Cobalt	1 (1 (Ť	Ļ	Ļ	Ļ	-	11	11	-	111	↓ ·	~	1	-	-		11	111	111	
Molybdenum	Ť	1	1	Ļ	Ļ	Ť	-	11	↓↓	111	11	1	1	11	11	-			1 (
Copper	Ť	Ť	11	~	~	~	-	1	-	-		111	~	~	-	1					
Sulphur	-	-	-	Ļ	Ļ	Ļ	-	-	-	-	-	111	111	-	-	Ļ					
Phosphorous	Î	1	1	Ļ	Ļ	$\downarrow \downarrow \downarrow \downarrow$	-	-	-	-	X	Ļ	11	-	-	-					
↑ = Increase ↓=Reduction ~ = constant - = not characteristic or unknown Several arrows = more intensive effect																					

THE EFFECTS OF ALLOYING ELEMENTS IN STEEL

ELEMENT	SOLID SOL	UBILITY	INFLUENCE	INFLUENCE UPON	INFLUENCE EXER CARB	ITED THROUGH	PRINCIPAL FUNCTION OF ELEMENT		
& SYMBOL	In Gamma Fe	In Alpha Fe	UPON FERRITE	AUSTENITE (HARDEN- ABILITY)	Carbide forming Tendency	Action during Tempering			
Aluminium Al	1.1% (in creased by carbon)	36% ±	Hardens considerably by solid solution.	If dissolved in Austenite increases hardenability mildly.	Graphitizes	-	 Used as deoxidiser, Restricts grain growth. Alloying element in nitriding steels. 		
Chromium Cr	12:8% (in 0-5% C steels 20%)-	Unlimited	Hardens slightly, increases corrosion resistance	Increases hardenability moderately. similar to manganese.	Greater than Mn. Less than W.	Mildly resists softening	 Increases corrosion and oxidation resistance. Increases hardenability. Increases strength at high temperature. With added C resists wear and abrasion. 		
Cobalt Co	Unlimited	75%	Hardens considerably by solid solution.	Decreases hardenability as dissolved.	Similar to Fe	Sustains hardness by solid solution.	 Contributes to red hardness by hardening ferrite. Alloying element in high- grade, high-speed steels. 		
Manganese Mn	Unlimited	3%	Hardens, plasticity somewhat reduced.	Similar to Cr.	Greater than Fe.Less than Cr.	Very little in usual per centages,	 Counteracts effect of brittleness from sulphur. Increases hardenabliity inexpensively. High Mn high C produces steels resistant to wear and abrasion, 		

Continued.

"THIS INFORMATION IS PRESENTED AS A GUIDE FOR MATERIAL SELECTION. SHRENIK STEELS PVT LTD. MAKES NO EXPRESSED OR IMPLIED WARRANTY FOR MATERIALS SELECTED SOLELY ON THE BASIS OF THE INFORMATION CONTAINED HEREIN AND BEARS NO RESPONSIBILITY FOR ANY SELECTION MADE ON THE BASIS OF INFORMATION CONTAINED HEREIN."

INFLUENCE INFLUENCE EXERTED THROUGH SOLID SOLUBILITY ELEMENT INFLUENCE UPON CARBIDE PRINCIPAL FUNCTION OF & UPON AUSTENITE In In Carbide forming Action during ELEMENT (HARDEN-**SYMBOL** FERRITE Gamma Fe Alpha F6 Tendency Tempering ABILITY) Molybdenum 3% 37.5% Age-hardening Increases Strong. Greater **Opposes** 1. Raises coarsening temperature of austenite. (in 0.05% C . (less with hardenability softening by Mo effect in high than Cr. steels 8%) Mo-Fe alloys. 2. Increases depth of lowered strongly. secondary hardening. hardening, temp.) 3. Raises hot and creep strength, red hardness 4. Enhances corrosion resistance in stainless steels. 5. Forms abrasion resistant particules. Very little in 🚍 1. Strengthens unauenched Nickel Unlimited 10% Strengthens Increases Graphitizes hardenability Ni indepen-& toughens less than Fe. small peror annealed steels. dent of C by solid slightly, austenite centages. 2. Toughens pearlitic, ferritic steels (especially at low retention with content. solution. higher carbon, temperatures) 3. Renders high Cr/Fe alloys austeniiic-1. Strengthens low C steels. Phosphorous 0.5% 2.8% inde Hardens Increases Ρ pendent of hardenability strongly 2. Increases resistance to C content by solid sirnilar to Mn. corrosion. 3. Improves machinability in solution. free cutting steels. Silicon 2%± (in 18.5% Hardens Increases Negative. **Sustains** 1. Used as deoxidiser, 0.35% C hardenability Si (Carbon with loss graphitizes. hardness by 2. Alloy for electrical and steels 9%) more than has little in ductility. solid solution. magnetic sheet steels, effect) 3. Improves oxidation Ni resistance. 4. Strengthens low alloy steels, Probably Titanium 0:75% 6%± (less Gives age-Greatest known Some secondary 1. Fixes carbon in inert (in 0.2% hardening with lowered (2% Ti renders hardening. particles Ti increases C steels in high Fe-Ti hardenability very 0.5% C stee! tempe-2. Reduces martensitic hardness and hardenability 1%±) ratures) alloys strongly as unhardenable) dissolved. Its in medium Cr steels. carbide effects reduce 3. Prevents formation of hardenability. austenite in high Cr steels. 4. Prevents localised deple tion of Cr in stainless steels during long heating periods. 33% (less Increases Opposes softening 1. Forms hard, abrasion Tungsten 6% (in Age-harden Strong 0.25% C with lowered hardenability by secondary resistant particles in too) W ing system in high W-Fe steels 11%) tempestrongly in small hardening. steels, high speed steels. 2. Promotes red hardness ratures) Alloys. quantities, and hot strength. Unlimited Hardens Increases Maximum 1. Promotes fine grain, Vanadium 1.0%± Very strong (in 0.2% C for secondary V moderately hardenability elevates coarsening teels 4%) in solid very strongly hardening, temperature of austenite. as dissolved. 2. Increases hardenability solution. when dissolved, 3. Resists tempering and causes marked secondary hardening.

THE EFFECTS OF ALLOYING ELEMENTS IN STEEL

"THIS INFORMATION IS PRESENTED AS A GUIDE FOR MATERIAL SELECTION. SHRENIK STEELS PVT LTD. MAKES NO EXPRESSED OR IMPLIED WARRANTY FOR MATERIALS SELECTED SOLELY ON THE BASIS OF THE INFORMATION CONTAINED HEREIN AND BEARS NO RESPONSIBILITY FOR ANY SELECTION MADE ON THE BASIS OF INFORMATION CONTAINED HEREIN."